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Abstract: The reactions of 'norephedrine and norpseudoephedrine with eleven
different aromatic aldehydes led, in each case, to tautomeric equilibria
consisting of two ring and one open-chain forms and obeying the equation:
log Ky = pot + ¢, where p = 0.54+0.02 and 0.53+0.02 and ¢ = -0.36+0.02 and
+0.3440.02, respectively. A connection was also found between the stereo-
selectivity of the ring-closures and the Hammett ot constants.

Although condensations of ephedrine and pseudoephedrine with oxo compounds
have been thoroughly investigatedz'3 relatively little attention has been
paid to those of the nor-derivatives.4-8 In the latter studies the ring-chain
tautomerism has been mentioned only sporadically. The important role of this
tautomerism in explaining the reactivity9 and stereochemistry of these
condensation reactionsl® and in their use as "prodrugs"11 motivated a study
on the 1,3-oxazolidines derived from norephedrine and norpseudoephedrine. At
the same time the present work continues our systematic investigationslz‘l4
on the ring-chain tautomerism of compounds derived from 1,2- and 1,3-
aminoalcohols and aldehydes:
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SYNTHESIS AND RESULTS

(+)-Norephedrine (2; Scheme 1) and (1R, 2R)-norpseudoephedrine (4; Scheme 2)

were allowed to react with aromatic aldehydes under very mild conditions; in

Scheme 1 the reactions starting from (+)-norephedrine are shown only for the
4317
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(1R,28)~enantiomer. The reactions took place quantitatively at ambient
temperature.
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A time-dependent 1y NMR spectroscopic study on the product formation in CDClj
at 400 MHz unequivocally showed that a three-component equilibrium was
attained in every case (Figs. 1 and 2, Table 1). The relative amounts of the
ring and chain tautomers were determined from the integrals of the acetal
and methine signals, respectively. The relative configurations of the ring
forms of compounds 3 and 5 were confirmed by 2DNOE measurements. 15

For tetra.hydro-l,3-oxaz:i.nes12'13 and 1,3-oxazolidinesl4, we recently estab-
lished that the ring-chain tautomerism for their 2-aryl-substituted
derivatives can be described by Equation (1):

log Ky = po"' + c (1)
where Ky = [ring]/[chain}, o* is the Hammett constantl®, and c is a
constant characteristic of the ring system and the solvent used. Constant p
does not depend on substitution of the hetero ring.12'14 The solvent-

dependence of p is not very strong, vet significant; at the same time, the
value of the intercept c¢ depends greatly on the nature of the solvent.l% 1n
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Figure 1. Time-dependent tautomerisation of compound 3a.

(o: 3Aa; o: 3Ba; A: 3Ca)
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Figure 2. Time-dependent tautomerisation of compound 5a.

(o: S5Aa; n: 5Ba; A: 5Ca)
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Table 1. Selected chemical shifts (ppm) and coupling constants
(Hz) for compounds 3g and 5ga

No. H-2 H-4 H-5 Me 1,5 Iy, ame
3A 8.28 3.64 4.84 1.11 4.3 6.7
3B 5.63 3.65 5.13 0.78 7.9 6.7
(5.56) (3.60) (5.07)  (0.71) (6.6) (6.5)
3c 6.08 3.82 5.13 0.79 6.1 6.4
SA 8.30 3.52 4.68 1.14 6.7 6.4
5B 5.89 3.26 4.38 1.31 8.2 6.1
(5.87)  (3.23) (4.35)  (1.27) (8.0) (6.1)
5C 5.76 3.22 4.46 1.32 6.4 6.4

2al11 chemical shifts and couplings are within 0.02 ppm and
0.2 Hz, respectively. Literature data’ at 100 MHz shown in
parentheses.

CDCl; p is 0.76+0.04 for tetrahydro-1,3-oxazinesl2:13 and 0.57+0.03 for
1,3-oxazolidines.14 Constant ¢, the intercept, is illustrative of the degree
of ring-closure. 2A negative value for ¢ indicates destabilization and a
positive value stabilization of the ring form.12

In this work, the three-component tautomeric equilibria for the two sets (3
and 5) of seven p- and four m-substituted derivatives (Schemes 1 and 2,
respectively) could also be characterized by Equation (1) [Fig. 1 and Tables
2 and 3]. From a comparison of the intercepts ¢ for 3 and 5 it is obvious
that the ring forms of 5 (derivatives of the erythro aminoalcohol) are
considerably more stable than those of compounds 3 (Ac = 0.70, Tables 2 and
3).

Two-component ring-chain tautomeric equilibria are often attained very
rapidly, within a few seconds.l4:17 1In the present case, however, the
equilibria were established relatively slowly and were also considerably
dependent on the substituents.

The time-dependent formation of the equilibrium products was examined for
four compounds (3a, 3k, 5a, and 5k) in CDCl; solution. The equilibrium was
established extremely fast for the (p-dimethylamino)phenyl-substituted
derivatives 3k and 5k. The isomer and tautomer ratios determined immediately
after dissolution were the same as those found after 24 hours. The formation
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of the equilibrium mixture was much slower for the 2-{p-nitrophenyl)
derivatives 3a and 5a. A constant tautomer ratio for the erythro derivative
3a was attained in about 4 hours (Fig. 1). In the case of the threo
counterpart 5a the tautomeric equilibrium was established in about 48 hours
at ambient temperature (Fig. 2).

Spassov et al.18 studied the tautomerism of a mixture of oxazolidine Schiff
bases prepared from erythro- and threo-2-(furyl)serine methyl ester and
furfural. In contrast with the observations described 1in this work, they
reported the formation of a two-component tautomeric mixture for the erythro
isomer, whereas the threo isomer gave, similarly as in our results, two
cyclic C-2 epimers in equilibrium with the open-chain form. They stated that
the establishment of the tautomeric equilibria required about 4 hours in
CDCl3 at room temperature. Therefore the 2-furyl-substituted derivatives of
norephedrine and norpseudoephedrine were synthesized and three~component
tautomeric equilibria were found in both cases: 3A:3B:3C = 84:10:6 and 5A:5B:
5C = 63:24:14.

The relative amounts of the cyclic form, i.e. the stereoselectivity of the
ring closure reactions of 3 and 5, showed interesting trends in both cases.
In the erythro series the ratio [B]/[C] (Table 3) is just above 1 for the p-
nitrophenyl and 2.77 for the (p-dimethylamino)phenyl substitution. In other
words, this ratio depends almost linearly on the Hammett ot constants (r =
-0.962). The threo series behaved similarly (Table 3; r = -0.812).

EXPERIMENTAL

The lH NMR spectra were recorded on a Jeol GX-400 FT NMR spectrometer in
CDCl3. The experimental details were given earlier.12 Melting points (Tables
2 and 3) are uncorrected. All compounds prepared gave correct elemental
analyses (within +0.4% C,H,N).

Reactions of norephedrine and norpseudoephedrine with aromatic aldehydes. The
aminoalcohol, 2 or 4 (151 mg; 1 mmol), was dissolved in ethanol (10 ml)
and an appropriate aromatic aldehyde (1 mmol) was added. After standing for
2-3 h at room temperature, the solvent was evaporated off and the products
were crystallized. The derivatives of m-substituted aldehydes were oils,
which, after being dried for 2 h in a vacuum desiccator, gave correct
analytical data.

|

Reactions of norephedrine and norpseudoephedrine with furfurol. The reactions
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were performed as above. Mp's (after crystallization from hexane) were
100-101 and 67-68 °C, respectively.
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